Learned defense response to hypoxia in newborn mice.

نویسندگان

  • Bieke Bollen
  • Myriam Bouslama
  • Boris Matrot
  • Rudi D'Hooge
  • Omer Van den Bergh
  • Jorge Gallego
چکیده

In newborns, hypoxia elicits defensive behaviors including awakening from sleep, body movements and crying. An inability to produce this defense response is a risk factor for sudden infant death syndrome and other respiratory control disorders. In this study, we examined the possibility that the defense response to hypoxia in newborns is partly determined by early exposure to hypoxia. We explored this possibility in 6-day-old mice, which resemble human preterm infants of approximately 25-30 weeks' gestational age. Ultrasonic vocalizations (USVs) were recorded as a marker for the defense response to hypoxia. In a conditioning experiment, newborn mice were exposed to two artificial odors (conditioned stimuli, CS). For acquisition (two trials), pups were exposed to one odor (CS+) in a hypoxic gas mixture (10% O2, which was the unconditioned stimulus, US) and to another odor (CS-) in air. Then, the pups were exposed to each odor while breathing air. Newborn mice produced significantly more USVs when exposed to the odor previously paired with hypoxia than to the control odor. Thus, associative learning may shape the defense response to hypoxia in newborns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arousal response to Hypoxia in Newborn Mice 1 Cold Stimulates the Behavioral Response to Hypoxia in Newborn Mice

In newborns, hypoxia elicits increased ventilation, arousal followed by defensive movements and cries. Cold is known to affect the ventilatory response to hypoxia, but whether it affects the arousal response remains unknown. The aim of the present study was to assess the effects of cold on the ventilatory and arousal responses to hypoxia in newborn mice. We designed an original platform measuri...

متن کامل

Cold stimulates the behavioral response to hypoxia in newborn mice.

In newborns, hypoxia elicits increased ventilation, arousal followed by defensive movements, and cries. Cold is known to affect the ventilatory response to hypoxia, but whether it affects the arousal response remains unknown. The aim of the present study was to assess the effects of cold on the ventilatory and arousal responses to hypoxia in newborn mice. We designed an original platform measur...

متن کامل

O24: Functional Role of the K2P Potassium Channel TASK-3 in Glioma

TASK-3, a two-pore-domain (K2P) potassium channel, has been implicated as important regulator for the effector function and proliferation of T-cells. Interestingly, TASK-3 has also a functional impact on tumor cells. Therefore, we sought to investigate whether TASK3 modulation might have a therapeutic potential for malignant gliomas by a variety of phenotypical and functional in vitro assays mi...

متن کامل

Endogenous brain erythropoietin is a potent sex-specific respiratory stimulant in adult and newborn mice.

We tested the hypothesis that endogenous brain Epo is a respiratory stimulant. Adult (3 mo) and newborn (10 days) male and female mice received an intracisternal (cisterna magna) injection of soluble Epo receptor (sEpoR; competes with EpoR to bind Epo; 50 μg/ml) or vehicle (0.1% BSA in PBS). Twenty-four hours after injection, we used whole body plethysmography to record minute ventilation (V̇e) ...

متن کامل

Intermittent hypoxia induces transient arousal delay in newborn mice.

Previous studies suggested that defective arousal might be a major mechanism in sleep-disordered breathing such as sudden infant death syndrome and obstructive sleep apnea. In this study, we examined the effects of intermittent hypoxia (IH) on the arousal response to hypoxia in 4-day-old mice. We hypothesized that IH would increase arousal latency, as previously reported in other species, and w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience letters

دوره 420 3  شماره 

صفحات  -

تاریخ انتشار 2007